LLM Inference for Large-Context Offline Workloads oLLM is a lightweight Python library for large-context LLM inference, built on top of Huggingface Transformers and PyTorch. It enables running models like gpt-oss-20B, qwen3-next-80B or Llama-3.1-8B-Instruct on 100k context using ~$200 consumer GPU with 8GB VRAM. No quantization is used—only fp16/bf16 precision. Latest updates (0.4.0) 🔥 qwen3-next-80B (160GB model) added with ⚡️1tok/2s throughput (fastest model so far) (160GB model) added with throughput (fastest model so far) Llama3 custom chunked attention replaced with flash-attention2 for stability gpt-oss-20B flash-attention-like implementation added to reduce VRAM usage gpt-oss-20B chunked MLP added to reduce VRAM usage KVCache is replaced with DiskCache. 8GB Nvidia 3060 Ti Inference memory usage: Model Weights Context length KV cache Baseline VRAM (no offload) oLLM GPU VRAM oLLM Disk (SSD) qwen3-next-80B 160 GB (bf16) 10k 1.4 GB ~170 GB ~5.4 GB 162 GB gpt-oss-20B 13 GB (packed bf16) 10k 1.4 GB ~40 GB ~7.3GB 15 GB llama3-1B-chat 2 GB (fp16) 100k 12.6 GB ~16 GB ~5 GB 15 GB llama3-3B-chat 7 GB (fp16) 100k 34.1 GB ~42 GB ~5.3 GB 42 GB llama3-8B-chat 16 GB (fp16) 100k 52.4 GB ~71 GB ~6.6 GB 69 GB By "Baseline" we mean typical inference without any offloading How do we achieve this: Loading layer weights from SSD directly to GPU one by one Offloading KV cache to SSD and loading back directly to GPU, no quantization or PagedAttention Offloading layer weights to CPU if needed FlashAttention-2 with online softmax. Full attention matrix is never materialized. Chunked MLP. Intermediate upper projection layers may get large, so we chunk MLP as well Typical use cases include: Analyze contracts, regulations, and compliance reports in one pass Summarize or extract insights from massive patient histories or medical literature Process very large log files or threat reports locally Analyze historical chats to extract the most common issues/questions users have Supported Nvidia GPUs: Ampere (RTX 30xx, A30, A4000, A10), Ada Lovelace (RTX 40xx, L4), Hopper (H100), and newer Getting Started It is recommended to create venv or conda environment first python3 -m venv ollm_env source ollm_env/bin/activate Install oLLM with pip install ollm or from source: git clone https://github.com/Mega4alik/ollm.git cd ollm pip install -e . pip install kvikio-cu{cuda_version} Ex, kvikio-cu12 💡 Note qwen3-next requires 4.57.0.dev version of transformers to be installed as pip install git+https://github.com/huggingface/transformers.git Example Code snippet sample from ollm import Inference, file_get_contents, TextStreamer o = Inference( " llama3-1B-chat " , device= " cuda:0 " ) # llama3-1B/3B/8B-chat, gpt-oss-20B, qwen3-next-80B o.ini_model(models_dir= " ./models/ " , force_download=False) o.offload_layers_to_cpu(layers_num=2) # (optional) offload some layers to CPU for speed boost past_key_values = o.DiskCache(cache_dir= " ./kv_cache/ " ) # set None if context is small text_streamer = TextStreamer(o.tokenizer, skip_prompt=True, skip_special_tokens=False) messages = [{ " role " : " system " , " content " : " You are helpful AI assistant " }, { " role " : " user " , " content " : " List planets " }] input_ids = o.tokenizer.apply_chat_template(messages, reasoning_effort= " minimal " , tokenize=True, add_generation_prompt=True, return_tensors= " pt " ).to(o.device) outputs = o.model.generate(input_ids=input_ids, past_key_values=past_key_values, max_new_tokens=500, streamer=text_streamer).cpu() answer = o.tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=False) print(answer) or run sample python script as PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True python example.py Contact us If there’s a model you’d like to see supported, feel free to reach out at [email protected]—I’ll do my best to make it happen.