The 2025 Nobel Prize in Physics has been awarded to John Clarke, Michel H. Devoret, and John M. Martinis "for the discovery of macroscopic quantum tunneling and energy quantization in an electrical circuit." The Nobel committee said during a media briefing that the laureates' work provides opportunities to develop "the next generation of quantum technology, including quantum cryptography, quantum computers, and quantum sensors." The three men will split the $1.1 million (11 million Swedish kroner) prize money. The presentation ceremony will take place in Stockholm on December 10, 2025.
"To put it mildly, it was the surprise of my life," Clarke told reporters by phone during this morning's press conference. "Our discovery in some ways is the basis of quantum computing. Exactly at this moment where this fits in is not entirely clear to me. One of the underlying reasons that cellphones work is because of all this work."
When physicists began delving into the strange new realm of subatomic particles in the early 20th century, they discovered a realm where the old, deterministic laws of classical physics no longer apply. Instead, uncertainty reigns supreme. It is a world governed not by absolutes, but by probabilities, where events that would seem impossible on the macroscale occur on a regular basis.
For instance, subatomic particles can “tunnel” through seemingly impenetrable energy barriers. Imagine that an electron is a water wave trying to surmount a tall barrier. Unlike water, if the electron's wave is shorter than the barrier, there is still a small probability that it will seep through to the other side.
This neat little trick has been experimentally verified many times. In the 1950s, physicists devised a system in which the flow of electrons would hit an energy barrier and stop because they lacked sufficient energy to surmount that obstacle. But some electrons didn’t follow the established rules of behavior. They simply tunneled right through the energy barrier.