Yet in recent years, scientists have discovered that our muscles themselves have a memory for movement and exercise.
When we move a muscle, the movement may appear to begin and end, but all these little changes are actually continuing to happen inside our muscle cells. And the more we move, as with riding a bike or other kinds of exercise, the more those cells begin to make a memory of that exercise.
When we move a muscle, the movement may appear to begin and end, but all these little changes are actually continuing to happen inside our muscle cells.
We all know from experience that a muscle gets bigger and stronger with repeated work. As the pioneering muscle scientist Adam Sharples—a professor at the Norwegian School of Sport Sciences in Oslo and a former professional rugby player in the UK—explained to me, skeletal muscle cells are unique in the human body: They’re long and skinny, like fibers, and have multiple nuclei. The fibers grow larger not by dividing but by recruiting muscle satellite cells—stem cells specific to muscle that are dormant until activated in response to stress or injury—to contribute their own nuclei and support muscle growth and regeneration. Those nuclei often stick around for a while in the muscle fibers, even after periods of inactivity, and there is evidence that they may help accelerate the return to growth once you start training again.
Sharples’s research focuses on what’s called epigenetic muscle memory. “Epigenetic” refers to changes in gene expression that are caused by behavior and environment—the genes themselves don’t change, but the way they work does. In general, exercise switches on genes that help make muscles grow more easily. When you lift weights, for example, small molecules called methyl groups detach from the outside of certain genes, making them more likely to turn on and produce proteins that affect muscle growth (also known as hypertrophy). Those changes persist; if you start lifting weights again, you’ll add muscle mass more quickly than before.
In 2018, Sharples’s muscle lab was the first to show that human skeletal muscle has an epigenetic memory of muscle growth after exercise: Muscle cells are primed to respond more rapidly to exercise in the future, even after a monthslong (and maybe even yearslong) pause. In other words: Your muscles remember how to do it.