Embodied change
Archaeologists have known for some time that we once braved colder temperatures than anyone previously imagined. Humans pushed into Eurasia and North America well before the last glacial period ended about 11,700 years ago. We were the only hominins to make it out of this era. Neanderthals, Denisovans, and Homo floresiensis all went extinct. We don’t know for certain what killed those species. But we do know that humans survived thanks to protection from clothing, large social networks, and physiological flexibility. Human resilience to extreme temperature is baked into our bodies, behavior, and genetic code. We wouldn’t be here without it.
“Our bodies are constantly in communication with the environment,” says Cara Ocobock, an anthropologist at the University of Notre Dame who studies how we expend energy in extreme conditions. She has worked closely with Finnish reindeer herders and Wyoming mountaineers.
But the relationship between bodies and temperature is surprisingly still a mystery to scientists. In 1847, the anatomist Carl Bergmann observed that animal species grow larger in cold climates. The zoologist Joel Asaph Allen noted in 1877 that cold-dwellers had shorter appendages. Then there’s the nose thing: In the 1920s, the British anthropologist Arthur Thomson theorized that people in cold places have relatively long, narrow noses, the better to heat and humidify the air they take in. These theories stemmed from observations of animals like bears and foxes, and others that followed stemmed from studies comparing the bodies of cold-accustomed Indigenous populations with white male control groups. Some, like those having to do with optimization of surface area, do make sense: It seems reasonable that a tall, thin body increases the amount of skin available to dump excess heat. The problem is, scientists have never actually tested this stuff in humans.
“Our bodies are constantly in communication with the environment.” Cara Ocobock, anthropologist, University of Notre Dame
Some of what we know about temperature tolerance thus far comes from century-old race science or assumptions that anatomy controls everything. But science has evolved. Biology has matured. Childhood experiences, lifestyles, fat cells, and wonky biochemical feedback loops can contribute to a picture of the body as more malleable than anything imagined before. And that’s prompting researchers to change how they study it.
“If you take someone who’s super long and lanky and lean and put them in a cold climate, are they gonna burn more calories to stay warm than somebody who’s short and broad?” Ocobock says. “No one’s looked at that.”
Ocobock and Cowgill teamed up with Scott Maddux and Elizabeth Cho at the Center for Anatomical Sciences at the University of North Texas Health Fort Worth. All four are biological anthropologists who have also puzzled over whether the rules Bergmann, Allen, and Thomson proposed are actually true.
For the past four years, the team has been studying how factors like metabolism, fat, sweat, blood flow, and personal history control thermoregulation.