Tech News
← Back to articles

The obstacles to scaling up humanoids

read original related products more articles

Over the next several years, humanoid robots will change the nature of work. Or at least, that’s what humanoid robotics companies have been consistently promising, enabling them to raise hundreds of millions of dollars at valuations that run into the billions.

Delivering on these promises will require a lot of robots. Agility Robotics expects to ship “hundreds” of its Digit robots in 2025 and has a factory in Oregon capable of building over 10,000 robots per year. Tesla is planning to produce 5,000 of its Optimus robots in 2025, and at least 50,000 in 2026. Figure believes “there is a path to 100,000 robots” by 2029. And these are just three of the largest companies in an increasingly crowded space.

Amplifying this message are many financial analysts: Bank of America Global Research, for example, predicts that global humanoid robot shipments will reach 18,000 units in 2025. And Morgan Stanley Research estimates that by 2050 there could be over 1 billion humanoid robots, part of a US $5 trillion market.

But as of now, the market for humanoid robots is almost entirely hypothetical. Even the most successful companies in this space have deployed only a small handful of robots in carefully controlled pilot projects. And future projections seem to be based on an extraordinarily broad interpretation of jobs that a capable, efficient, and safe humanoid robot—which does not currently exist—might conceivably be able to do. Can the current reality connect with the promised scale?

What Will It Take to Scale Humanoid Robots?

Physically building tens of thousands, or even hundreds of thousands, of humanoid robots, is certainly possible in the near term. In 2023, on the order of 500,000 industrial robots were installed worldwide. Under the basic assumption that a humanoid robot is approximately equivalent to four industrial arms in terms of components, existing supply chains should be able to support even the most optimistic near-term projections for humanoid manufacturing.

But simply building the robots is arguably the easiest part of scaling humanoids, says Melonee Wise, who served as chief product officer at Agility Robotics until this month. “The bigger problem is demand—I don’t think anyone has found an application for humanoids that would require several thousand robots per facility.” Large deployments, Wise explains, are the most realistic way for a robotics company to scale its business, since onboarding any new client can take weeks or months. An alternative approach to deploying several thousand robots to do a single job is to deploy several hundred robots that can each do 10 jobs, which seems to be what most of the humanoid industry is betting on in the medium to long term.

While there’s a belief across much of the humanoid robotics industry that rapid progress in AI must somehow translate into rapid progress toward multipurpose robots, it’s not clear how, when, or if that will happen. “I think what a lot of people are hoping for is they’re going to AI their way out of this,” says Wise. “But the reality of the situation is that currently AI is not robust enough to meet the requirements of the market.”

Bringing Humanoid Robots to Market

Market requirements for humanoid robots include a slew of extremely dull, extremely critical things like battery life, reliability, and safety. Of these, battery life is the most straightforward—for a robot to usefully do a job, it can’t spend most of its time charging. The next version of Agility’s Digit robot, which can handle payloads of up to 16 kilograms, includes a bulky “backpack” containing a battery with a charging ratio of 10 to 1: The robot can run for 90 minutes, and fully recharge in 9 minutes. Slimmer humanoid robots from other companies must necessarily be making compromises to maintain their svelte form factors.

... continue reading