Led by researchers from the Chinese Academy of Sciences, HiNa’s goal is to commercialize sodium-ion technology in an industry dominated by lithium. To deliver that, it has built labs to develop its own chemistries and factories to make cells at scale. HiNa began mass manufacturing last year, bringing two sodium-ion products to market. One is a cube-shaped battery for storing electricity; it’s already powering commercial-scale energy storage stations in China, including one in Hubei Province that began operation in July 2024. The other product is a cylindrical battery already being used in electric mopeds (which are ubiquitous in China) and other small vehicles. Compared to their lithium counterparts, sodium-ion batteries perform better in cold environments and can charge faster, but they have lower energy density. This means a sodium-ion battery carries less energy than a lithium-ion battery of the same size—a problem for cars, since that means shorter range. HiNa says it will continue to increase its products’ energy density through technological innovations, such as by using more-efficient materials for the cathode and anode and improving batteries’ structure. Currently, the energy density of its cube-shaped battery is 165 watt-hours per kilogram—around 80% of that of a lithium iron phosphate battery, the mainstream lithium battery in China. Key indicators Industry: Energy storage Energy storage Founded: 2017 2017 Headquarters: Beijing, China Beijing, China Notable fact: HiNa was founded by Chen Liquan, a researcher at the Chinese Academy of Sciences, and three of his students, with support from the academy. Chen is dubbed “the father of Chinese lithium batteries” for leading a team that developed the country’s first such cell three decades ago. At 85, Chen still oversees HiNa’s research and development with one of the students—the company’s chairman, Hu Yongsheng. Potential for impact The global sodium-ion market is still in its infancy, and its future is uncertain, but HiNa’s endeavor has provided a potential solution for the world to achieve net-zero carbon emissions without overly relying on a handful of critical minerals, whose production has drawn environmental, humanitarian, and geopolitical concerns. In the energy storage sector—sodium-ion batteries’ main area of usage—they are expected to grab up to 30% of the global market by 2030. The 50-megawatt energy storage plant in Hubei Province alone is projected to avoid an estimated 13,000 tons of carbon dioxide every year, which is roughly equivalent to removing about 3,000 gas-powered cars from the road. Caveats HiNa faces a big question: Can sodium-ion batteries thrive commercially? Lithium-ion cells are projected to remain cheaper and more powerful in the foreseeable future. The unit price of sodium-ion batteries is currently about 60% higher than that of lithium ones, but their theoretical production cost should eventually be around a third lower than that of lithium-ion cells. Industry analysts say HiNa and other sodium-ion battery makers must ensure that customers can get more bang for their bucks in order to create a market. Chinese lithium-battery behemoths are also making moves into sodium, upping pressure on specialist companies like HiNa. CATL, the world’s largest battery maker, has said it will mass-produce sodium-ion batteries for electric cars by the end of this year. Meanwhile, EV giant BYD is building a massive factory in eastern China dedicated to making sodium-ion cells. Next steps HiNa’s plan is to focus on a few submarkets. It says that sectors such as heavy trucks and energy storage represent huge potential because of China’s big domestic market. The company aims to launch a fast-charging sodium-ion battery that powers heavy trucks this month. The battery can fully charge in just 20 minutes, according to HiNa. The feature is expected to be a draw for truck drivers, who cannot afford long pit stops.