Last winter, at a meeting in the Finnish wilderness high above the Arctic Circle, a group of mathematicians gathered to contemplate the fate of a mathematical universe.
It was minus 20 degrees Celsius, and while some went cross-country skiing, Juan Aguilera, a set theorist at the Vienna University of Technology, preferred to linger in the cafeteria, tearing pieces of pulla pastry and debating the nature of two new notions of infinity. The consequences, Aguilera believed, were grand. “We just don’t know what they are yet,” he said.
Infinity, counterintuitively, comes in many shapes and sizes. This has been known since the 1870s, when the German mathematician Georg Cantor proved that the set of real numbers (all the numbers on the number line) is larger than the set of whole numbers, even though both sets are infinite. (The short version: No matter how you try to match real numbers to whole numbers, you’ll always end up with more real numbers.) The two sets, Cantor argued, represented entirely different flavors of infinity and therefore had profoundly different properties.
From there, Cantor constructed larger infinities, too. He took the set of real numbers, built a new set out of all of its subsets, then proved that this new set was bigger than the original set of real numbers. And when he took all the subsets of this new set, he got an even bigger set. In this way, he built infinitely many sets, each larger than the last. He referred to the different sizes of these infinite sets as cardinal numbers (not to be confused with the ordinary cardinals 1, 2, 3…).
Lucy Reading-Ikanda
Set theorists have continued to define cardinals that are far more exotic and difficult to describe than Cantor’s. In doing so, they’ve discovered something surprising: These “large cardinals” fall into a surprisingly neat hierarchy. They can be clearly defined in terms of size and complexity. Together, they form a massive tower of infinities that set theorists then use to probe the boundaries of what’s mathematically possible.
But the two new cardinals that Aguilera was pondering in the Arctic cold behaved oddly. He had recently constructed them, along with Joan Bagaria of the University of Barcelona and Philipp Lücke of the University of Hamburg, only to find that they didn’t quite fit into the usual hierarchy. Instead, they “exploded,” Aguilera said, creating a new class of infinities that their colleagues hadn’t bargained on — and implying that far more chaos abounds in mathematics than expected.
It’s a provocative claim. The prospect is, to some, exciting. “I love this paper,” said Toby Meadows, a logician and philosopher at the University of California, Irvine. “It seems like real progress — a really interesting insight that we didn’t have before.”
But it’s also difficult to really know whether the claim is true. That’s the nature of studying infinity. If mathematics is a tapestry sewn together by traditional assumptions that everyone agrees on, the higher reaches of the infinite are its tattered fringes. Set theorists working in these extreme areas operate in a space where the traditional axioms used to write mathematical proofs do not always apply, and where new axioms must be written — and often break down.
Up here, most questions are fundamentally unprovable, and uncertainty reigns. And so to some, the new cardinals don’t change anything. “I don’t buy it at all,” said Hugh Woodin, a set theorist at Harvard University who is currently leading the quest to fully define the mathematical universe. Woodin was Bagaria’s doctoral adviser 35 years ago and Aguilera’s in the 2010s. But his students are cutting their own path through infinity’s thickets. “Your children grow up and defy you,” Woodin said.
... continue reading