Tech News
← Back to articles

Scientists just cracked the quantum code hidden in a single atom

read original related products more articles

To build a large-scale quantum computer that works, scientists and engineers need to overcome the spontaneous errors that quantum bits, or qubits, create as they operate.

Scientists encode these building blocks of quantum information to suppress errors in other qubits so that a minority can operate in a way that produces useful outcomes.

As the number of useful (or logical) qubits grows, the number of physical qubits required grows even further. As this scales up, the sheer number of qubits needed to create a useful quantum machine becomes an engineering nightmare.

Now, for the first time, quantum scientists at the Quantum Control Laboratory at the University of Sydney Nano Institute have demonstrated a type of quantum logic gate that drastically reduces the number physical qubits needed for its operation.

To do this, they built an entangling logic gate on a single atom using an error-correcting code nicknamed the 'Rosetta stone' of quantum computing. It earns that name because it translates smooth, continuous quantum oscillations into clean, digital-like discrete states, making errors easier to spot and fix, and importantly, allowing a highly compact way to encode logical qubits.

GKP Codes: A Rosetta Stone for Quantum Computing

This curiously named Gottesman-Kitaev-Preskill (GKP) code has for many years offered a theoretical possibility for significantly reducing the physical number of qubits needed to produce a functioning 'logical qubit'. Albeit by trading efficiency for complexity, making the codes very difficult to control.

Research published on August 21 in Nature Physics demonstrates this as a physical reality, tapping into the natural oscillations of a trapped ion (a charged atom of ytterbium) to store GKP codes and, for the first time, realizing quantum entangling gates between them.

Led by Sydney Horizon Fellow Dr Tingrei Tan at the University of Sydney Nano Institute, scientists have used their exquisite control over the harmonic motion of a trapped ion to bridge the coding complexity of GKP qubits, allowing a demonstration of their entanglement.

"Our experiments have shown the first realization of a universal logical gate set for GKP qubits," Dr Tan said. "We did this by precisely controlling the natural vibrations, or harmonic oscillations, of a trapped ion in such a way that we can manipulate individual GKP qubits or entangle them as a pair."

... continue reading