Join the event trusted by enterprise leaders for nearly two decades. VB Transform brings together the people building real enterprise AI strategy. Learn more
Enterprises that want to build and scale agents also need to embrace another reality: agents aren’t built like other software.
Agents are “categorically different” in how they’re built, how they operate, and how they’re improved, according to Writer CEO and co-founder May Habib. This means ditching the traditional software development life cycle when dealing with adaptive systems.
“Agents don’t reliably follow rules,” Habib said on Wednesday while on stage at VB Transform. “They are outcome-driven. They interpret. They adapt. And the behavior really only emerges in real-world environments.”
Knowing what works — and what doesn’t work — comes from Habib’s experience helping hundreds of enterprise clients build and scale enterprise-grade agents. According to Habib, more than 350 of the Fortune 1000 are Writer customers, and more than half of the Fortune 500 will be scaling agents with Writer by the end of 2025.
Using non-deterministic tech to produce powerful outputs can even be “really nightmarish,” Habib said — especially when trying to scale agents systemically. Even if enterprise teams can spin up agents without product managers and designers, Habib thinks a “PM mindset” is still needed for collaborating, building, iterating and maintaining agents.
“Unfortunately or fortunately, depending on your perspective, IT is going to be left holding the bag if they don’t lead their business counterparts into that new way of building.”
Why goal-based agents is the right approach
One of the shifts in thinking includes understanding the outcome-based nature of agents. For example, she said that many customers request agents to assist their legal teams in reviewing or redlining contracts. But that’s too open-ended. Instead, a goal-oriented approach means designing an agent to reduce the time spent reviewing and redlining contracts.
“In the traditional software development life cycle, you are designing for a deterministic set of very predictable steps,” Habib said. “It’s input in, input out in a more deterministic way. But with agents, you’re seeking to shape agentic behavior. So you are seeking less of a controlled flow and much more to give context and guide decision-making by the agent.”
... continue reading