Tech News
← Back to articles

Multi-omics analysis of a pig-to-human decedent kidney xenotransplant

read original related products more articles

Organ shortage remains a major challenge in transplantation, and gene-edited pig organs offer a promising solution1–3. Despite gene-editing, the immune reactions following xenotransplantation can still cause transplant failure4. To understand the immunological response of a pig-to-human kidney xenotransplantation, we conducted large-scale multi-omics profiling of the xenograft and the host’s blood over a 61-day procedure in a brain-dead human (decedent) recipient. Blood plasmablasts, natural killer (NK) cells, and dendritic cells increased between postoperative day (POD)10 and 28, concordant with expansion of IgG/IgA B-cell clonotypes, and subsequent biopsy-confirmed antibody-mediated rejection (AbMR) at POD33. Human T-cell frequencies increased from POD21 and peaked between POD33-49 in the blood and xenograft, coinciding with T-cell receptor diversification, expansion of a restricted TRBV2/J1 clonotype and histological evidence of a combined AbMR and cell-mediated rejection at POD49. At POD33, the most abundant human immune population in the graft was CXCL9+ macrophages, aligning with IFN-γ-driven inflammation and a Type I immune response. In addition, we see evidence of interactions between activated pig-resident macrophages and infiltrating human immune cells. Xenograft tissue showed pro-fibrotic tubular and interstitial injury, marked by S100A65, SPP16 (Osteopontin), and COLEC117, at POD21–POD33. Proteomics profiling revealed human and pig complement activation, with decreased human component after AbMR therapy with complement inhibition. Collectively, these data delineate the molecular orchestration of human immune responses to a porcine kidney, revealing potential immunomodulatory targets for improving xenograft survival.