Tech News
← Back to articles

Physiology and immunology of pig-to-human decedent kidney xenotransplant

read original related products more articles

Xenotransplantation of genetically-modified pig kidneys offers a solution to the scarcity of organs for end-stage renal disease patients.1 We performed a 61-day alpha-Gal knock-out pig kidney and thymic autograft transplant into a nephrectomized brain-dead human using clinically approved immunosuppression, without CD40 blockade or additional genetic modification. Hemodynamic and electrolyte stability and dialysis independence were achieved. Post-operative day (POD) 10 biopsies revealed glomerular IgM and IgA deposition, activation of early complement components and mesangiolysis with stable renal function without proteinuria, a phenotype not seen in allotransplantation. On POD 33, an abrupt increase in serum creatinine was associated with antibody-mediated rejection and increased donor-specific IgG. Plasma exchange, C3/C3b inhibition and rabbit anti-thymocyte globulin (rATG), completely reversed xenograft rejection. Pre-existing donor-reactive T cell clones expanded progressively in the circulation post-transplant, acquired an effector transcriptional profile and were detected in the POD 33 rejecting xenograft prior to rATG treatment. This study provides the first long-term physiologic, immunologic, and infectious disease monitoring of a pig-to-human kidney xenotransplant and indicates that pre-existing xenoreactive T cells and induced antibodies to unknown epitope(s) present a major challenge, despite significant immunosuppression. It also demonstrates that a minimally gene-edited pig kidney can support long-term life-sustaining physiologic functions in a human.