Tech News
← Back to articles

Is Matrix Multiplication Ugly?

read original related products more articles

A few weeks ago I was minding my own business, peacefully reading a well-written and informative article about artificial intelligence, when I was ambushed by a passage in the article that aroused my pique. That’s one of the pitfalls of knowing too much about a topic a journalist is discussing; journalists often make mistakes that most readers wouldn’t notice but that raise the hackles or at least the blood pressure of those in the know.

The article in question appeared in The New Yorker. The author, Stephen Witt, was writing about the way that your typical Large Language Model, starting from a blank slate, or rather a slate full of random scribbles, is able to learn about the world, or rather the virtual world called the internet. Throughout the training process, billions of numbers called weights get repeatedly updated so as to steadily improve the model’s performance. Picture a tiny chip with electrons racing around in etched channels, and slowly zoom out: there are many such chips in each server node and many such nodes in each rack, with racks organized in rows, many rows per hall, many halls per building, many buildings per campus. It’s a sort of computer-age version of Borges’ Library of Babel. And the weight-update process that all these countless circuits are carrying out depends heavily on an operation known as matrix multiplication.

Witt explained this clearly and accurately, right up to the point where his essay took a very odd turn.

HAMMERING NAILS

Here’s what Witt went on to say about matrix multiplication:

“‘Beauty is the first test: there is no permanent place in the world for ugly mathematics,’ the mathematician G. H. Hardy wrote, in 1940. But matrix multiplication, to which our civilization is now devoting so many of its marginal resources, has all the elegance of a man hammering a nail into a board. It is possessed of neither beauty nor symmetry: in fact, in matrix multiplication, a times b is not the same as b times a.”

The last sentence struck me as a bizarre non sequitur, somewhat akin to saying “Number addition has neither beauty nor symmetry, because when you write two numbers backwards, their new sum isn’t just their original sum written backwards; for instance, 17 plus 34 is 51, but 71 plus 43 isn’t 15.”

The next day I sent the following letter to the magazine:

“I appreciate Stephen Witt shining a spotlight on matrices, which deserve more attention today than ever before: they play important roles in ecology, economics, physics, and now artificial intelligence (“Information Overload”, November 3). But Witt errs in bringing Hardy’s famous quote (“there is no permanent place in the world for ugly mathematics”) into his story. Matrix algebra is the language of symmetry and transformation, and the fact that a followed by b differs from b followed by a is no surprise; to expect the two transformations to coincide is to seek symmetry in the wrong place — like judging a dog’s beauty by whether its tail resembles its head. With its two-thousand-year-old roots in China, matrix algebra has secured a permanent place in mathematics, and it passes the beauty test with flying colors. In fact, matrices are commonplace in number theory, the branch of pure mathematics Hardy loved most.”

Confining my reply to 150 words required some finesse. Notice for instance that the opening sentence does double duty: it leavens my many words of negative criticism with a few words of praise, and it stresses the importance of the topic, preëmptively1 rebutting editors who might be inclined to dismiss my correction as too arcane to merit publication.

... continue reading