Tech News
← Back to articles

What’s next for AlphaFold: A conversation with a Google DeepMind Nobel laureate

read original related products more articles

AlphaFold 2 had cracked a 50-year-old grand challenge in biology. “This is the reason I started DeepMind,” Hassabis told me a few years ago. “In fact, it’s why I’ve worked my whole career in AI.” In 2024, Jumper and Hassabis shared a Nobel Prize in chemistry.

It was five years ago this week that AlphaFold 2’s debut took scientists by surprise. Now that the hype has died down, what impact has AlphaFold really had? How are scientists using it? And what’s next? I talked to Jumper (as well as a few other scientists) to find out.

“It’s been an extraordinary five years,” Jumper says, laughing: “It’s hard to remember a time before I knew tremendous numbers of journalists.”

AlphaFold 2 was followed by AlphaFold Multimer, which could predict structures that contained more than one protein, and then AlphaFold 3, the fastest version yet. Google DeepMind also let AlphaFold loose on UniProt, a vast protein database used and updated by millions of researchers around the world. It has now predicted the structures of some 200 million proteins, almost all that are known to science.

Despite his success, Jumper remains modest about AlphaFold’s achievements. “That doesn’t mean that we’re certain of everything in there,” he says. “It’s a database of predictions, and it comes with all the caveats of predictions.”

A hard problem

Proteins are the biological machines that make living things work. They form muscles, horns, and feathers; they carry oxygen around the body and ferry messages between cells; they fire neurons, digest food, power the immune system; and so much more. But understanding exactly what a protein does (and what role it might play in various diseases or treatments) involves figuring out its structure—and that’s hard.

Proteins are made from strings of amino acids that chemical forces twist up into complex knots. An untwisted string gives few clues about the structure it will form. In theory, most proteins could take on an astronomical number of possible shapes. The task is to predict the correct one.

Jumper and his team built AlphaFold 2 using a type of neural network called a transformer, the same technology that underpins large language models. Transformers are very good at paying attention to specific parts of a larger puzzle.