The central challenge, then, lies in rethinking how people, processes, and technology work together.
Across industries as different as customer experience and agricultural equipment, the same pattern is emerging: Traditional organizational structures—centralized decision-making, fragmented workflows, data spread across incompatible systems—are proving too rigid to support agentic AI. To unlock value, leaders must rethink how decisions are made, how work is executed, and what humans should uniquely contribute.
"It is very important that humans continue to verify the content. And that is where you're going to see more energy being put into," Ryan Peterson, EVP and chief product officer at Concentrix.
Much of the conversation centered on what can be described as the next major unlock: operationalizing human-AI collaboration. Rather than positioning AI as a standalone tool or a “virtual worker,” this approach reframes AI as a system-level capability that augments human judgment, accelerates execution, and reimagines work from end to end. That shift requires organizations to map the value they want to create; design workflows that blend human oversight with AI-driven automation; and build the data, governance, and security foundations that make these systems trustworthy.
"My advice would be to expect some delays because you need to make sure you secure the data,” says Heidi Hough, VP for North America aftermarket at Valmont. “As you think about commercializing or operationalizing any piece of using AI, if you start from ground zero and have governance at the forefront, I think that will help with outcomes."
Early adopters are already showing what this looks like in practice: starting with low-risk operational use cases, shaping data into tightly scoped enclaves, embedding governance into everyday decision-making, and empowering business leaders, not just technologists, to identify where AI can create measurable impact. The result is a new blueprint for AI maturity grounded in reengineering how modern enterprises operate.
"Optimization is really about doing existing things better, but reimagination is about discovering entirely new things that are worth doing," says Hung.
Watch the webcast.
This webcast is produced in partnership with Concentrix.
This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff. It was researched, designed, and written by human writers, editors, analysts, and illustrators. This includes the writing of surveys and collection of data for surveys. AI tools that may have been used were limited to secondary production processes that passed thorough human review.