Tech News
← Back to articles

What LLMs Know About Their Users

read original related products more articles

We need to talk about data integrity.

Narrowly, the term refers to ensuring that data isn’t tampered with, either in transit or in storage. Manipulating account balances in bank databases, removing entries from criminal records, and murder by removing notations about allergies from medical records are all integrity attacks.

More broadly, integrity refers to ensuring that data is correct and accurate from the point it is collected, through all the ways it is used, modified, transformed, and eventually deleted. Integrity-related incidents include malicious actions, but also inadvertent mistakes.

We tend not to think of them this way, but we have many primitive integrity measures built into our computer systems. The reboot process, which returns a computer to a known good state, is an integrity measure. The undo button is another integrity measure. Any of our systems that detect hard drive errors, file corruption, or dropped internet packets are integrity measures.

Just as a website leaving personal data exposed even if no one accessed it counts as a privacy breach, a system that fails to guarantee the accuracy of its data counts as an integrity breach – even if no one deliberately manipulated that data.

Integrity has always been important, but as we start using massive amounts of data to both train and operate AI systems, data integrity will become more critical than ever.

Most of the attacks against AI systems are integrity attacks. Affixing small stickers on road signs to fool AI driving systems is an integrity violation. Prompt injection attacks are another integrity violation. In both cases, the AI model can’t distinguish between legitimate data and malicious input: visual in the first case, text instructions in the second. Even worse, the AI model can’t distinguish between legitimate data and malicious commands.

Any attacks that manipulate the training data, the model, the input, the output, or the feedback from the interaction back into the model is an integrity violation. If you’re building an AI system, integrity is your biggest security problem. And it’s one we’re going to need to think about, talk about, and figure out how to solve.

Web 3.0 – the distributed, decentralized, intelligent web of tomorrow – is all about data integrity. It’s not just AI. Verifiable, trustworthy, accurate data and computation are necessary parts of cloud computing, peer-to-peer social networking, and distributed data storage. Imagine a world of driverless cars, where the cars communicate with each other about their intentions and road conditions. That doesn’t work without integrity. And neither does a smart power grid, or reliable mesh networking. There are no trustworthy AI agents without integrity.

We’re going to have to solve a small language problem first, though. Confidentiality is to confidential, and availability is to available, as integrity is to what? The analogous word is “integrous,” but that’s such an obscure word that it’s not in the Merriam-Webster dictionary, even in its unabridged version. I propose that we re-popularize the word, starting here.

... continue reading