Tech News
← Back to articles

Sub-zero Celsius elastocaloric cooling via low-transition-temperature alloys

read original related products more articles

Abas, N. et al. Natural and synthetic refrigerants, global warming: a review. Renew. Sustain. Energy Rev. 90, 557–569 (2018).

Garimella, S. et al. Realistic pathways to decarbonization of building energy systems. Joule 6, 956–971 (2022).

Esper, J. et al. 2023 summer warmth unparalleled over the past 2,000 years. Nature 631, 94–97 (2024).

Cui, J. et al. Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires. Appl. Phys. Lett. 101, 073904 (2012).

Li, L. et al. Cooling innovations: elastocaloric shape memory alloys, manufacturing, simulation, and refrigerator. Prog. Mater. Sci. 153, 101477 (2025).

Cui, J. Early efforts on elastocaloric cooling (2002 to 2014). Shape Mem. Superelasticity 10, 80–88 (2024).

Tusek, J. et al. A regenerative elastocaloric heat pump. Nat. Energy 1, 16134 (2016).

Ahcin, Z. et al. High-performance cooling and heat pumping based on fatigue-resistant elastocaloric effect in compression. Joule 6, 2338–2357 (2022).

Zhou, G. et al. A multi-material cascade elastocaloric cooling device for large temperature lift. Nat. Energy 9, 862–870 (2024).

Qian, S. et al. High-performance multimode elastocaloric cooling system. Science 380, 722–727 (2023).

... continue reading