Desurvire, E. Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, 1994).
Tse, M. et al. Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy. Phys. Rev. Lett. 123, 231107 (2019).
Casacio, C. A. et al. Quantum-enhanced nonlinear microscopy. Nature 594, 201–206 (2021).
Madsen, L. S. et al. Quantum computational advantage with a programmable photonic processor. Nature 606, 75–81 (2022).
Kawasaki, A. et al. Real-time observation of picosecond-timescale optical quantum entanglement towards ultrafast quantum information processing. Nat. Photon. 19, 271–276 (2025).
Mears, R., Reekie, L., Jauncey, I. & Payne, D. Low-noise erbium-doped fibre amplifier operating at 1.54um. Electron. Lett. 23, 1026–1028 (1987).
Sobhanan, A. et al. Semiconductor optical amplifiers: recent advances and applications. Adv. Opt. Photon. 14, 571–651 (2022).
Baumgartner, R. & Byer, R. Optical parametric amplification. IEEE J. Quantum Electron. 15, 432–444 (1979).
Jankowski, M., Mishra, J. & Fejer, M. M. Dispersion-engineered χ(2) nanophotonics: a flexible tool for nonclassical light. J. Phys. Photon. 3, 042005 (2021).
Ho, M.-C., Uesaka, K., Marhic, M., Akasaka, Y. & Kazovsky, L. 200-nm-bandwidth fiber optical amplifier combining parametric and Raman gain. J. Lightwave Technol. 19, 977–981 (2001).
... continue reading