Tech News
← Back to articles

Atmospheric H<sub>2</sub> variability over the past 1,100 years

read original related products more articles

Warwick, N., Griffiths, P., Keeble, J., Archibald, A., & Pyle, J. Atmospheric implications of increased Hydrogen use. GOV.UK https://www.gov.uk/government/publications/atmospheric-implications-of-increased-hydrogen-use (2022).

Derwent, R. G. et al. Global modelling studies of hydrogen and its isotopomers using STOCHEM-CRI: likely radiative forcing consequences of a future hydrogen economy. Int. J. Hydrog. Energy 45, 9211–9221 (2020).

Paulot, F. et al. Global modeling of hydrogen using GFDL-AM4.1: sensitivity of soil removal and radiative forcing. Int. J. Hydrog. Energy 46, 13446–13460 (2021).

Sand, M. et al. A multi-model assessment of the Global Warming Potential of hydrogen. Commun. Earth Environ. 4, 203 (2023).

Prather, M. J. An environmental experiment with H 2 ? Science 302, 581–582 (2003).

Warwick, N. J. et al. Atmospheric composition and climate impacts of a future hydrogen economy. Atmos. Chem. Phys. 23, 13451–13467 (2023).

Ehhalt, D. H. & Rohrer, F. The tropospheric cycle of H 2 : a critical review. Tellus B Chem. Phys. Meteorol. 61, 500–535 (2009).

Patterson, J. D. & Saltzman, E. S. Diffusivity and solubility of H 2 in ice Ih: implications for the behavior of H2 in polar ice. J. Geophys. Res. Atmos. 126, e2020JD033840 (2021).

Haan, D. Teneurs en monoxyde de carbone de l’air contenu dans la glace de l’Antarctique et du Groenland. Thesis, Université Joseph-Fourier (1996).

Solomon, S. et al. Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 327, 1219–1223 (2010).

... continue reading