The US and Europe were the dominant public funders of fusion energy research and are home to many of the world’s pioneering private fusion efforts. The West has consequently developed many of the basic technologies that will make fusion power work. But in the past five years China’s support of fusion energy has surged, threatening to allow the country to dominate the industry. The industrial base available to support China’s nascent fusion energy industry could enable it to climb the learning curve much faster and more effectively than the West. Commercialization requires know-how, capabilities, and complementary assets, including supply chains and workforces in adjacent industries. And especially in comparison with China, the US and Europe have significantly under-supported the industrial assets needed for a fusion industry, such as thin-film processing and power electronics. To compete, the US, allies, and partners must invest more heavily not only in fusion itself—which is already happening—but also in those adjacent technologies that are critical to the fusion industrial base. China’s trajectory to dominating fusion and the West’s potential route to competing can be understood by looking at today’s most promising scientific and engineering pathway to achieve grid-relevant fusion energy. That pathway relies on the tokamak, a technology that uses a magnetic field to confine ionized gas—called plasma—and ultimately fuse nuclei. This process releases energy that is converted from heat to electricity. Tokamaks consist of several critical systems, including plasma confinement and heating, fuel production and processing, blankets and heat flux management, and power conversion. A close look at the adjacent industries needed to build these critical systems clearly shows China’s advantage while also providing a glimpse into the challenges of building a fusion industrial base in the US or Europe. China has leadership in three of these six key industries, and the West is at risk of losing leadership in two more. China’s industrial might in thin-film processing, large metal-alloy structures, and power electronics provides a strong foundation to establish the upstream supply chain for fusion. The importance of thin-film processing is evident in the plasma confinement system. Tokamaks use strong electromagnets to keep the fusion plasma in place, and the magnetic coils must be made from superconducting materials. Rare-earth barium copper oxide (REBCO) superconductors are the highest-performing materials available in sufficient quantity to be viable for use in fusion. The REBCO industry, which relies on thin-film processing technologies, currently has low production volumes spanning globally distributed manufacturers. However, as the fusion industry grows, the manufacturing base for REBCO will likely consolidate among the industry players who are able to rapidly take advantage of economies of scale. China is today’s world leader in thin-film, high-volume manufacturing for solar panels and flat-panel displays, with the associated expert workforce, tooling sector, infrastructure, and upstream materials supply chain. Without significant attention and investment on the part of the West, China is well positioned to dominate REBCO thin-film processing for fusion magnets. The electromagnets in a full-scale tokamak are as tall as a three-story building. Structures made using strong metal alloys are needed to hold these electromagnets around the large vacuum vessel that physically contains the magnetically confined plasma. Similar large-scale, complex metal structures are required for shipbuilding, aerospace, oil and gas infrastructure, and turbines. But fusion plants will require new versions of the alloys that are radiation-tolerant, able to withstand cryogenic temperatures, and corrosion-resistant. China’s manufacturing capacity and its metallurgical research efforts position it well to outcompete other global suppliers in making the necessary specialty metal alloys and machining them into the complex structures needed for fusion.