Tambo AI A React package for building AI-powered applications with generative UI, where users interact through natural language. Build apps with Generative UI and MCP Get started using our AI chat template: npx tambo create-app my-tambo-app Documentation For detailed information about what Tambo is and how it works, check out our docs site. For a quick walkthrough of using the fundamental features of Tambo, check out this page. How does tambo-ai work? tambo-ai is a client-side registry of React components that can be used by an LLM. 1. Register your components const components : TamboComponent [ ] = [ { name : "Graph" , description : "A component that renders various types of charts (bar, line, pie) using Recharts. Supports customizable data visualization with labels, datasets, and styling options." , component : Graph , propsSchema : graphSchema , // zod schema } , // Add more components ] ; 2. Wrap your app in a TamboProvider // In your chat page < TamboProvider apiKey = { process . env . NEXT_PUBLIC_TAMBO_API_KEY ! } components = { components } > < MessageThreadFull contextKey = "tambo-template" /> 3. Submit user messages const { submit } = useTamboThreadInput ( contextKey ) ; await submit ( { contextKey , streamResponse : true , } ) ; 4. Render AI-generated components const { message } = useMessageContext ( ) ; // Render the component < div > { message . renderedComponent } ; We provide components that use these hooks for you in our templates and in our component library at ui.tambo.co. Getting Started Quick Start Create a new tambo app: npm create tambo-app my-tambo-app cd my-tambo-app npm run dev Templates App Description AI Chat with Generative UI Get started with Generative UX, tools, and MCP Conversational Form Collect information with generative UX Check out our UI library tambo-ui for components that leverage tambo. Basic Usage 1. Displaying a message thread: import { useTambo , useTamboThreadInput } from "@tambo-ai/react" ; function ChatInterface ( ) { const { thread } = useTambo ( ) ; const { value , setValue , submit } = useTamboThreadInput ( ) ; return ( < div > { /* Display messages */ } < div > { thread . messages . map ( ( message , index ) => ( < div key = { index } className = { `message ${ message . role } ` } > < div > { message . content } { message . component && message . component . renderedComponent } ) ) } { /* Input form */ } < form onSubmit = { ( e ) => { e . preventDefault ( ) ; submit ( ) ; } } className = "input-form" > < input type = "text" value = { value } onChange = { ( e ) => setValue ( e . target . value ) } placeholder = "Type your message..." /> < button type = "submit" > Send ) ; } 2. Adding AI-Generated Components: Create components that can be dynamically generated by the AI: // components/WeatherCard.jsx import { useTamboComponentState } from "@tambo-ai/react" ; export function WeatherCard ( ) { const [ weatherState , setWeatherState , { isPending } ] = useTamboComponentState ( "weather" , { temperature : 0 , condition : "" , location : "" , } , ) ; if ( isPending ) { return < div > Loading weather data... ; } return ( < div > < h3 > { weatherState . location } < div > { weatherState . temperature } °C < div > { weatherState . condition } ) ; } 3. Register your components: // App.jsx import { TamboProvider } from "@tambo-ai/react" ; import { WeatherCard } from "./components/WeatherCard" ; import { z } from "zod" ; // Define your components const components = [ { name : "WeatherCard" , description : "A component that displays weather information" , component : WeatherCard , propsSchema : z . object ( { temperature : z . number ( ) , condition : z . string ( ) , location : z . string ( ) , } ) , } , ] ; // Pass them to the provider function App ( ) { return ( < TamboProvider apiKey = "your-api-key" components = { components } > < YourApp /> ) ; } Adding Tools for the AI Register tools to make them available to the AI: const tools : TamboTool [ ] = [ { name : "getWeather" , description : "Fetches current weather data for a given location" , tool : async ( location : string , units : string = "celsius" ) => { // Example implementation const weather = await fetchWeatherData ( location ) ; return { temperature : weather . temp , condition : weather . condition , location : weather . city , } ; } , toolSchema : z . function ( ) . args ( z . string ( ) . describe ( "Location name (city)" ) , z . string ( ) . optional ( ) . describe ( "Temperature units (celsius/fahrenheit)" ) , ) . returns ( z . object ( { temperature : z . number ( ) , condition : z . string ( ) , location : z . string ( ) , } ) , ) , } , ] ; // Pass tools to the provider < TamboProvider apiKey = "your-api-key" tools = { tools } > < YourApp /> ; Using MCP Servers const mcpServers = [ { url : "https://mcp-server-1.com" , transport : "http" , name : "mcp-server-1" , } , ] ; // Pass MCP servers to the provider < TamboProvider apiKey = { process . env . NEXT_PUBLIC_TAMBO_API_KEY ! } components = { components } > < TamboMcpProvider mcpServers = { mcpServers } > { children } ; Read our full documentation Development Prerequisites Node.js 18.x+ npm 10.x+ Resources License MIT License - see the LICENSE file for details. Join the Community We're building tools for the future of user interfaces. Your contributions matter. Star this repo to support our work. Join our Discord to connect with other developers.